Advanced Modular Operations, Extended GCD & Cryptographic Demonstrations

Modular Operations

Result

9

17 + 23 ≡ 9 (mod 31)

Operation Breakdown

Raw Result
40
Quotient
1
Remainder
9
Modular Inverse of b
27

Modular Clock Visualization

Step-by-Step Solution

Step 1: Calculate 17 + 23 = 40
Step 2: Divide 40 by 31: quotient = 1, remainder = 9
Step 3: Result: 9 (mod 31)

Fast Modular Exponentiation

Modular Power Result

9

7^256 ≡ 9 (mod 13)

Binary Breakdown of Exponent

100000000

Exponentiation Steps Visualization

Square-and-Multiply Steps

Extended Euclidean Algorithm

GCD Results

GCD(a,b)
2
Bézout x
-9
Bézout y
47
Mod Inverse
N/A

Bézout's Identity

240 × (-9) + 46 × 47 = 2

Extended Euclidean Algorithm Table

Step Quotient Remainder x y

GCD Reduction Visualization

Linear Congruence & CRT Solver

Solution

x ≡ 6 (mod 7)

Verification: 3×6 ≡ 18 ≡ 4 (mod 7) ✓

Solution Process

Step 1: Check if gcd(3, 7) divides 4
Step 2: Find modular inverse of 3 mod 7
Step 3: Multiply both sides by inverse

Solution Set Visualization

Complete Solution Set

Cryptographic Applications

Generated Keys

Public Key (n, e)
(3233, 17)
Private Key (n, d)
(3233, 2753)

Encryption/Decryption Demo

Original Message
42
Encrypted
2557
Decrypted
42

Multiplicative Group Structure

Security Analysis